- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Giannou, Angeliki (5)
-
Chen, Yudong (3)
-
Xie, Qiaomin (3)
-
Mertikopoulos, Panayotis (2)
-
Vasileios_Vlatakis-Gkaragkounis, Emmanouil (1)
-
Vlatakis-Gkaragkounis, Emmanouil V (1)
-
Vlatakis-Gkaragkounis, Emmanouil-Vasileios (1)
-
Vlatakis-Gkaragkounis, Vasileios-Emmanouil (1)
-
Vlatakis_Gkaragkounis, Emmanouil (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vasileios_Vlatakis-Gkaragkounis, Emmanouil; Giannou, Angeliki; Chen, Yudong; Xie, Qiaomin (, Proceedings of Machine Learning Research)For min-max optimization and variational inequalities problems (VIPs), Stochastic Extragradient (SEG) and Stochastic Gradient Descent Ascent (SGDA) have emerged as preeminent algorithms. Constant step-size versions of SEG/SGDA have gained popularity due to several appealing benefits, but their convergence behaviors are complicated even in rudimentary bilinear models. Our work elucidates the probabilistic behavior of these algorithms and their projected variants, for a wide range of monotone and non-monotone VIPs with potentially biased stochastic oracles. By recasting them as time-homogeneous Markov Chains, we establish geometric convergence to a unique invariant distribution and aymptotic normality. Specializing to min-max optimization, we characterize the relationship between the step-size and the induced bias with respect to the global solution, which in turns allows for bias refinement via the Richardson-Romberg scheme. Our theoretical analysis is corroborated by numerical experiments.more » « less
-
Vlatakis-Gkaragkounis, Emmanouil V; Giannou, Angeliki; Chen, Yudong; Xie, Qiaomin (, AISTATS 2024)
-
Giannou, Angeliki; Vlatakis-Gkaragkounis, Emmanouil-Vasileios; Mertikopoulos, Panayotis (, Conference on Learning Theory)
-
Giannou, Angeliki; Vlatakis-Gkaragkounis, Vasileios-Emmanouil; Mertikopoulos, Panayotis (, Annual Conference on Neural Information Processing Systems)
An official website of the United States government

Full Text Available